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ABSTRACT 

The theory for  the development of a Sporadic E layer by the 

wind shear mechanism operating on slowly recombining minor ions, such 

as Ca', Mg+ and Na+ i s  developed. 

const i tute  normally about one percent of the t o t a l  ion abundance i n  

the E region t h e i r  density a t  wind shear nodes can rival tha t  of the 

major ions. 

It i s  suggested tha t  fluctuations i n  the influx of meteoric material  

may enable the density of minor ions a t  E-W wind shear nodes occasionally 

t o  dominate the density of major ions thus giving rise t o  observable 

It is  shown that i f  these ions 

This is  a consequence of t h e i r  low effect ive removal rate.  

Sporadic Eo 



major ions (O', N2' and 

10 INTRODUCTION 

I n  the  E region and lower F region the 

02+) created by so lar  radiation and by fast secondary electrons a r e  

transformed by ion molecule reactions predominantly t o  0 ' and m0'. 

These diatomic ions then recombine dissociat ively with electrons. 

a t  the lowest fringe of the E region near 85 km the balance between ion 

production and removal ra tes  requires recombination coefficients f o r  02' 

and NO+ which agree very w e l l  w i t h  rate coefficients measured i n  the 

laboratory (l, 'I. 
i n  the case of N ' and NO 

2 

tu re  dependence have been carried out. 

about 5 x 10-7 cm3/sec for  NO +(" 3' 4, and about 2 x loe7 cm3/sec f o r  

2 
Except 

This i s  t rue  at 300°K and a t  other temperatures also 
+ for  which laboratory measurements of tempera- 

A t  300" the  coefficients a r e  

' 
of T 

measurements (l, 

accounting f o r  the D region layer near 80 km on the model of n i t r i c  oxide 

ionization by so lar  Lyman a and dissociative recombination a t  a rate of 

1-2 x 10+ cmAjsec ( in  agreement with the T, 

'I. The dependence on electron temperature, i n  the neighborhood 

f o r  NO', agrees wi th  ionospheric data  as well as laboratory 
O2 

-1.4 
e 

9 3). Furthermore there  appears t o  be no d i f f i cu l ty  2n 

c : x  -1.4 temperature depencience j 

i f  the high NO densi t ies  i n  the lo7 cm'3 range as measured by Barth (6) 

preva i l  there(2).  

Nevertheless, this seemingly happy concordance has not as yet  

induced general acceptance of la rge  dissociative recombination coefficients.  

A most serious deterrent  is  the d i f f icu l ty  of reconciling the theory of 

1 
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the wind-shear model of Sporadic-E ionization w i t h  recombination coef- 

f i c i en t s  very much greater than 

mechanism i s  by far the most a t t rac t ive  one proposed f o r  Sporadic-E and 

since, furthermore, it i s  supported by fairly c l ea r  cut  observational 

evidence that there is  a relationship between the Sporadic-E layers and 

nodes i n  the E-W horizontal wind profile(9' lo) it seems desirable some- 

how t o  reconcile t h i s  theory t o  effective recombination coefficients of 

the order of 3-5 x 10-7 cm3/sec f o r  the major diatomic ions. It is the 

purpose of t h i s  paper t o  attempt t h i s  reconciliation i n  retaining the 

wind shear mechanism but i n  permitting it t o  operate on minor, slowly 

recombining metallic ions, such as Ca', Mg', and Na', presumably meteoric 

i n  origin.  

resul t ing from ve r t i ca l  gradients i n  the horizontal  wind concentrate a l l  

kinds of ions including the minor ones which i n  overal l  abundance near 

100 km may const i tute  no more than 1% of a l l  ionic species. The major 

~ m ~ / s e c ( ~ '  8 ) .  Since the wind shear 

The cent ra l  idea here is  that the v e r t i c a l  e l ec t r i c  fields 

ions, 

nodes 

space 

which 

02' and NO', 

i n  the f i e l d  they do not r i s e  i n  density much above their  normal 

average values. The metal ions, however, should have removal rates 

a r e  very low and which depend very probably l inear ly  on the density 

recombine so swiftly t h a t  a t  the proper 

of t he  individual species. 

w i l l  be an ion molecule reaction result ing i n  the formation of a metal 

oxide ion o r  a mutual neutralization process. I n  t h i s  case, given the 

typ ica l  preponderance of the  concentrating e f fec t  of the e l ec t r i c  fields 

over the dispersing e f fec t  of diffusion, t he  build up i n  ion density can 

be dramatic and the metallic ion concentrations can reach peaks a hundred 

t i m e s  higher than their  average values. 

In  f a c t  the rate controll ing process probably 

It is  suggested that peaks i n  
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metallic ion concentration always exist  a t  the level  where the wind 

s h i f t s  from east t o  west but that normally these l i e  below the general 

l eve l  of the O+, NO+ and 02+ ionosphere. On occasions, when there is an 

enhancement i n  the amount of meteoric debris present i n  the upper atmos- 

phere, the peaks can push above the normal ionospheric background and 

manifest themselves a s  Sporadic-E layers. 

ex is t s  i n  tha t  the seasonal variation i n  frequency of Sporadic-E a t  

temperate lati tudes (11) greatly resembles the variation i n  radar meteor 

rates 

as one brought out by Dubin (13) i n  which an intense occurence of 

Sporadic-E accompanied a massive micrometeoric shower i n  February, 1958. 

O f  cowaep speculation absut a relationshf!! between meteors and Sporadic-E 

i s  by no means unknown (14). 

the meteoric hypotheses and the wind shear mechanism. 

Some support fo r  t h i s  model 

It is a l so  interesting t o  note isolated coincidences such 

What is being proposed here is  a merger of 

2. GENERAL W I M >  SHEAR THEOW 

As Whitehead showed i n  his or iginal  treatment of the wind shear 

theory ( 7 9  8, and as others(15, 16) have verified i n  elaborations on h i s  

ideas a concentration of ions can be produced by the ver t ica l  e lec t r ic  

f ield result ing from the horizontal motion of the atmosphere dragging 

the ionosphere across the magnetic f i e l d  of the earth. 

a ve r t i ca l  gradient i n  the E-W component of the wind velocity then the 

interplay of motional fields, e lectr ic  fields and diffusion w i l l  resul t  

i n  a ver t ica l  motion of the ions. If it i s  assumed tha t  the E wind 

velocity component varies sinusoidally with the a l t i tude  z then - s t i l l  

according t o  Whitehead - there w i l l  be a ver t ica l  velocity of ionized 

mat e ria 1 

If there exis ts  
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where A is  the ve r t i ca l  "wave-length'' of the movement. 

between 5 and 20 km and Vo between 3 and 25 m/sec. 

ionic species i s  created a t  a r a t e  

A usually lies 

If ,  now, a given 

where No+ would be the steady s t a t e  density without the ve r t i ca l  motion, 

and Tois the l i fe t ime of the ion against removal either by recombination 

o r  by some other so r t  of coll ision, then the rate of increase i n  density 

of ionic species a t  some leve l  z would be given by 

D is, of course, the appropriate Ionic diffusion coefficient.  

If a new v e r t i c a l  scale p, given by 

I I--  + is  adopted and the r a t i o  N'/N~ 

state f is  given by 

is written as f i x )  -inen i n   ne atee~y 

where 
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and 

The boundary conditions are 

and f (x) 2 0 everywhere. 

3. THE MAJOR IONOSPHERIC IONS AS PRINCIPAL IONS I N  SPORADIC E 

Now i n  the present Sporadic-E theory a s ingle  component ionosphere 

is  assumed where N+ implicit ly represents the density of the major ionic 

species and it is assumed specificaiiy Yn6t 

and that 

where a is the  effect ive recombination coeff ic ient  i n  the E region (7, 8) .  

The r e su l t  is  t h a t  t h e  characterist ic build up fac tor  R/L must attain 

values in the neighborhood of 5 and t h i s  it cannot do unless 2 

suf f ic ien t ly  long. 

few times cm3/sec. Under these conditions the steady state equation 

-1 
is 

The requirement i n  fac t  is  that a be no more than a 
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involves f quadratically 

and 

while 

It is the dependence on # which prevents f from a t ta in ing  large values 

a t  maximum. For example, neglecting diff’usion, Whitehead(7, 8, showed 

and that f could be of the order of 10 only i f  a were of the  order of 

cm3/sec when typical  values of Vo and A are used i n  determining R. 

A very much more e f f ic ien t  concentrating mechanism would be needed t o  

build up a narrow ten fold enhancement i n  the major atmospheric ions i f  

indeed their  recombination coefficients are larger than cm3/sec i n  

view of the f ac t  that the disappearance rate i n  t h i s  model increases 

w i t h  the ion density. 
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4. W I N D  SREAR TREORY FOR MINOR SIOWLY RECOMBIIIJIIIG IONS 

If it is  allowed tha t  a is  large f o r  these major ions the wind 

shear mechanism can s t i l l  be retained provided there exis ts  i n  the iono- 

sphere an adequate reservoir of very slowly recombining ions whose average 

abundance may be very low. The ions with the longest lifetime will always 

tend t o  be preponderant i n  the concentration peaks and i f  the r a t i o  of 

t h e i r  lifetime t o  their average concentration is  high enough t h e i r  density 

can build up from a minimum far below the density of the surrounding 

major ions t o  a sharp maximum which dominates the  local distribution. 

Two models of the removal process affecting the minor ionic 

constituents w i l l  be considered. One of these is  a reaction such as 

o r  

A+ + B - 3  A + B  

i n  which 

independent of the density of A'. The other is recombination with 

electrons with 
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where, however, it i s  not necessarily t rue that Ne and @ a r e  equal o r  

nearly equal everywhere, the average value of N being under the control 

of O+, %+ and NO'. 
e 

4.1 STEADY SrClTE : ION MOLECUIE REACTION REMOVAL 

In the first model To = 7 so tha t  Eq. ( 5 )  reads 

w i t h  

It w i l l  be assumed that D and 7 are  independent of a l t i tude.  The r a t i o  

of R/L t o  1/L which controls the nature of the problem is then determined 

by the relat ive importance of the ionic decay time 75 . There are  two 

l imiting cases. 

negligible compared t o  1/L. 

One of these is  when Z is  small enough that R/L is 

In  t h i s  case 

and f = l  (22 1 

is  the t r i v i a l  solution. The other case - when 

t o  that  i n  which a reservoir of ions which are neither being created nor 

2 is  very long - amounts 
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r 
I -  

9 

destroyed i s  rearranged i n  space by the electric f i e l d  gradient and 

diffusion. The steady state  i n  this approximation is 

One quadrature yields 

d f + R f & % = & ,  (26 1 
dx L 

For the solution which has a maximum a t  x = 0 the constant vanishes and 

or 
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For large values of R/L the  asyntotic form of Jo(iR/L) gives 

Mow with D = 5 x lo5 c&/sec, A = 10 6 cm and Vo = 5 x 10 3 cm/sec 

3 x lo5 per cm3 would require an average ion density of 3 x 10 3 per  cm3 

2 it turns  out that fo is  10 . Thus t o  build up an ion density peak of 

i n  t h i s  case. 

The point of half maximum density would be reached where 

o r  

and 

Ir? +;!I! exmqle just considered th i s  would be a t  5 x loo3 A o r  only 

50 meters. 

The r a t i o  R/L i n  this example is about 2 x 10 3 and L - l  i s  

4 5 x 10 /Z 

is  val id  so long as ‘2: 

z = X/2 the transport  processes are creating ionization a t  the rate 

Hence the  approximation of negligible creation and loss 

is  500 seconds o r  greater. Thus a t  z = 0 and 

a-rrvo N + / X  (34) 



, 

. 

while they a r e  being removed chemically a t  the rate 

The r a t i o  of the transport  r a t e  t o  the chemical rate is 

which is, i n  the example selected 

3 x  10-2T 0 
(37) 

A t  the 100 km l eve l  there are not many reactions available t o  

I n  the case of the first two ions the ions such as Ca+, Mg+ and I@+. 

reac t  ion 

z h c ~ l c  be **ant *a+.- --___ 
per  cm3. 

by such reactions the l i fe t ime of Ca+ o r  Mg+ should be a t  l ea s t  100 seconds. 

This i s  cer ta inly a lower l i m i t  a t  100 km. For mutual neutralization 

with a r a t e  coefficient of lom6 cm3/sec the negative ion density would 

need t o  be 10 o r  la rger  t o  reduce the ionic l i fe t ime below 100 seconds. 

Thus it would appear that the approximation (23) should be a good one 

above 100 km. 

W-e ozone density should be between 10 6 and 10 7 

If a rate coefficient of the order of cm3/sec i s  at ta ined 

4 



Where the ionic lifetime i s  too short the fill. differential 

equation (19) must be solved to obtain the distribution f(x) 

method of obtaining a solution of this inhomogeneous differential equation 

seems available. 

No simple 

By means of the change of variable 

x 

or 

or . 

where 

&loz = I / L  

f = "r' (45) 
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and 

o(== W , 2 f f 2 .  

If f (x )  is t o  be an even, periodic, non negative function of x so must 

y(x) and it can be represented by a Fourier series 

If t h i s  series i s  inserted i n  the d i f f e ren t i a l  equation (41) and use i s  

made of the expansion 

the following recursion relationship may be obtained for  the  coe 

where I 

and 

(W 

: i en t  s 
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The two arbitrary constants co and cl are determined by the 

boundary conditions (24) and (25). In the present case these may be 

written as follows 

or 

and 

n =o 

for a l l  x. 

The ratio test for successive coefficients from the recursion 

formula (49) indicates that 

and hence the series solution is rapidly convergent. 

Numerical evaluation of f(x) from the series solution fo r  y(x) 

would be interesting f r o m  the point of view of determining the effect of 

increasing the value of "c compared to 27l- Vo/A and 477- D/h2. Since 

it is very likely that above 100 km i;' is long enough to Justify disregard 

-1 2 



of ion creation and loss compared t o  the transport processes no attempt 

has yet been made t o  obtain these solutions. 

4.2 THE TD& DEPENDEIVI! EQUATION 

If it is supposed that a t  t = 0 when the velocity field is  suddenly 

turned on the ion density is  W f o m  w i t h  

N+= No + (60) 

everyvhere the change of ion density with time is  governed by the t i m e  

dependent equation 

n 

where 

is subdect t o  the conditions 

a t  a l l  times. If a steady state exis ts  then 
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where f(x)  is the steady state solution of the steady state equation 

already discussed. It is  obvious that the simple separable solution 

cannot satisfy these conditions since g = 1 a t  t = 0 would imply the 

contradiction 

- I  

Hence, i f  separable solutions exis t ,  it is  necessary t o  combine two 
- .  . - ------.-?- ?>-.?=?.=-?--+ qnl lT+inna +.o 
u u c t a r q  *.uury--.- ---- - - ------ 

such tha t  

a t  t = 0 and such that 

i f  that is possible 

Separable solutions f T ex i s t  i f  
i i  



The functions T i ( t )  must therefore be solutions of the differential 

equation 

where the dependence on x of the two terms i n  the right hand muat balance 

each other. The solution of this differential equation is  

where F$O and 

n u s  as t -+ DO 

a8 it should. 
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The character is t ic  time of relaxation f o r  the  dis t r ibut ion is 

thus 

This is of the order of 

whichever i s  smallest. 

minutes. 

The time is typically on the order of a few 

t 

4.3 Steady State : Removal by Recombination 

If the ionic species whose density is Ni is removed prllparily 

by d i r ec t  recombination with electrons the volume rate of loss is given 

where, however, 

necessarily. 

combination coefficients f o r  the major ions a large density of the minor 

Xn t h i s  case, too, i f  a is very much l e s s  than the re- i 

species can build up a t  the nodes in the  easrt-west wind pattern.  



I n  t h i s  case the  steady state condition parallel t o  the one of 

Whitehead(7, 8, i n  which diffusion is neglected becomes 

where 

N;6/Mm = I 

This equation may be writ ten i n  terms of f ( x )  

The maximum value of f w i l l  occur a t  x=O and there i t s  value w i l l  be 

given by 

(83) 

If the maximum i n  f i s  t o  be so Large tha t  
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a t  x=O then the condition (85) becomes 

o r  

i f  R >>l t h i s  condition may be writ ten as 

Since r is  the re la t ive  average abundance of the minor ionic 

species it is  c l ea r  t ha t  unless r is too small the minor ion abundance 

a t  the  maxima can build up t o  densit ies comparable t o  those at ta ined by 

major species with the same recombination coefficient.  O f  course, i f  

r is too small the approximation that  N and Ne a r e  equal a t  the peak i 
cannot hold. The a t t r ac t ive  feature of t h i s  model is  that a f o r  the 

ef f 
major ions can be allowed t o  be of the order of 5 x 

inhibi t ing any build up i n  t h e i r  density while i n  principle the minor 

cm3/sec 

ion recombination coefficient might be as small as 3 x lo'= cm 3 /sec. 

Thus R could be very large indeed i f  the minor ion had t o  wait around 

f o r  an electron t o  neutralize it. It i s  much more l ike ly  however that 

some other mechanism w i l l  lead t o  neutralization more effect ively than 

radiat ive recombination. Thus the  treatment i n  sections 4.1 is  more 

l ikely t o  be applicable. 

L 
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The minimum value of f occurs a t  x= and is  given by 

The rest of the Whitehead treatment can be modified appropriately t o  

accommodate t h i s  model by appropriate insertions of the parameter r. 

5 .  DISCUSSION AND CONCLUSION 

As support f o r  t h i s  mechanism of Sporadic E formation it is  

possible t o  c i t e  the appearance of metallic ions i n  the mass spectra 

(17 18’ - ------a----- -* +hasp inne obtained i n  the lower E; regions- . AiAb Guru..--.---- - _  

appears t o  be adequate i f  the  calibration of the mass spectrometers is 

correct.  

and 120 km. 

3 Average densi t ies  of the order of 10 are required between 95 

It i s  a l so  suggestive that the  frequency of occurence of Spo- 

radic-E (fE > 5 Mc) varies during the year i n  temperate la t i tudes  i n  S 
a way not unlike the frequency of radar meteor echoes (11, 12). mis 

same tempomi xiri~tim h c X s  fer the abundance of sodium atoms i n  the 

daytime as deduced from dayglow observations of the sodium D l ines  ( 2 j  l9) 

It would be most interest ing of course t o  identify mass spectrometrically 

the  ions which populate the Sporadic-Elayer. However, lacking such 

evidence, there  does not appear to  be any reason not t o  postulate that 

these ions are metallic and that the Sporadic-E layer  i s  a permanent 

feature a t  the E-W wind nodes. 

only when the rate of influx of meteoric material suffers  an upward 

perturbation and temporarily enhances the supply of the requis i te  ions. 

It becomes observable from the ground 
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The f ac t  that the daytime steady state ionosphere requires that 

0 + and NO+ recombine a t  rates which demand dissociative recombination 

coefficients of the order of 1-5 x LOm7 cm3/sec and the fac t  tha t  these 

values are a l s o  given by laboratory measurements would suggest t ha t  

2 

models f o r  time dependent ionospheric phenomena avoid contradiction with 

t h i s  resul t .  

real si tuat ion,  does have t h i s  merit. 

The present model, while  not demonstrably representing the 

It shows that the wind shear 

mechanism f o r  Sporadic-E does not necessarily e n t a i l  a contradiction w i t h  

the laboratory and steady state resul ts  fo r  the recombination coeff ic ients  

of 02+ and NO+. 
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